

Quadratic graphs have equations of the form:

$$y = ax^2 + bx + c$$

where *a*, *b*, *c* are positive or negative constants (*b* and/or *c* could also be zero)

To draw a quadratic graph from its equation, you need to calculate and plot points. You need to plot enough points to give the shape of the curve.

Example $y = x^2 - 3x$ gives these points:

2

A

2

x	- 1	0	1	2	3	4
у	4	0	- 2	-2	0	4

In this case it is useful to work out an extra point:

When x = 1.5, $y = 1.5^2 - 3 \times 1.5 = -2.25$ This is the lowest point on the curve.

V

Graph of
$$y = x^2 - 3x$$

The curve crosses the y axis at (0, 0) and the x axis at (0, 0) and (3, 0).

The points where the curve crosses the x axis (i.e. the line y = 0) give the solutions of the equation $x^2 - 3x = 0$.

The solutions of $x^2 - 3x = 0$ are: x = 0 and 3

The solutions of $x^2 - 3x = 3$ are found where the curve crosses the line y = 3.

The solutions are x = -0.8 and 3.8 (correct to 1 decimal place)

- The curve has a *minimum point* at (1.5, – 2.25).

All quadratic equations $y = ax^2 + bx + c$ have this characteristic shape. When *a* is positive, the curve has a *minimum point* like this one. When *a* is negative, the curve is the other way up and has a *maximum point*.

Example $y = 5 + 2x - 4x^2$ gives the following points:

Graph of $y = 5 + 2x - 4x^2$

x	- 3	- 2	- 1	0	1	2	3
у	- 37	- 15	- 1	5	3	- 7	- 25

To help get the shape right near the highest point, it is useful to work out extra points: eg when x = 0.5, $y = 5 + 2 \times 0.5 - 4 \times 0.5^2 = 5$

when x = 0.25, $y = 5 + 2 \times 0.25 - 4 \times 0.25^2 = 5.25$ (the maximum value of y)

The graph is shown below.

-3

The *maximum point* on this curve is (0.25, 5.25).

This curve crosses the y axis at (0, 5)and the x axis at (-0.9, 0) and (1.4, 0)(correct to 1 decimal place)

The points where the curve crosses the x axis give the solutions of the equation $5+2x-4x^2 = 0$

The solutions are x = -0.9 and 1.4 (correct to 1 decimal place)

The graph can be used to solve other equations.

For example $25 + 2x - 4x^2 = 0$ is equivalent to $5 + 2x - 4x^2 = -20$ so look for the *x* values where the curve crosses y = -20

The solutions are x = -2.3 and 2.8 (correct to 1 decimal place)

Try these....

1 a) Complete the table:

X	- 3	- 2	- 1	0	1	2	3
x^2							
$2x^2$							
$3x^2$							
$-x^2$							
$-2x^{2}$							
$-3x^{2}$							

b) On the grid below draw and label the graphs of the following:

c) Write down what you notice about your graphs.

2 a) Complete the table below for $y = 2x^2 - 5x - 3$

x	- 3	- 2	- 1	0	1	2	3	4	5
y									

b) On the grid below plot the points from the table, but do not join them yet.

c) Find the value of *y* when x = 1.25 and plot this point on the grid.

d) Join the points with a smooth curve.

e) Use your graph to solve the following equations:

- (i) $2x^2 5x 3 = 0$
- (ii) $2x^2 5x 3 = 5$
- (iii) $2x^2 5x 3 = 19$
- (iv) $2x^2 5x = 0$
- (v) $2x^2 5x + 2 = 0$
- (vi) $2x^2 5x 9 = 0$

A Resource for Free-standing Mathematics Qualifications

- 3 a) Draw the graph of $y = 4x x^2$ for values of x between 1 and 5
 - b) What is the maximum point on the curve?
 - c) Use your graph to solve the following equations:
 - (i) $4x x^2 = 0$ (ii) $4x - x^2 = 2$ (iii) $4x - x^2 = 2$ (iv) $4 + 4x - x^2 = 0$
- 4 a) Draw the graph of $y = x^2 3x 4$ for values of x between -2 and 5
 - b) Find the coordinates of the minimum point on the curve.
 - c) Use your graph to solve the following equations:
 - (i) $x^{2}-3x-4=0$ (ii) $x^{2}-3x-4=3$ (iii) $x^{2}-3x-4=-2$ (iv) $x^{2}-3x=0$ (v) $x^{2}-3x+1=0$ (vi) $x^{2}-3x-6=0$
- 5 a) Draw the graph of $y = 3x^2 + 2x 7$ for values of x between 4 and 3
 - b) Give approximate coordinates for the minimum point on the curve.
 - c) Use your graph to solve the following equations:
 - (i) $3x^{2} + 2x 7 = 0$ (ii) $3x^{2} + 2x - 7 = 20$ (iii) $3x^{2} + 2x - 7 = -5$ (iv) $3x^{2} + 2x - 17 = 0$ (v) $3x^{2} + 2x = 0$
 - d) Explain how you can tell from the graph that the equation $3x^2 + 2x + 3 = 0$ has no solutions.
- 6 a) Draw the graph of $y = 9 2x 2x^2$ for values of x between 4 and 3
 - b) Estimate the coordinates of the maximum point on the curve.
 - c) Use your graph to solve the following equations:
 - (i) $9 2x 2x^2 = 0$ (ii) $9 2x 2x^2 = 7$ (iii) $9 2x 2x^2 = -12$ (iv) $2x^2 + 2x = 0$ (v) $2x^2 + 2x = 5$ (vi) $2x^2 + 2x 19 = 0$
 - d) Explain how you can tell from the graph that the equation $2x^2 + 2x + 3 = 0$ has no solutions.

Teacher Notes

Unit Intermediate Level, Using algebra, functions and graphs

Skills used in this activity:

- Drawing graphs of quadratic functions
- Using graphs to find the solutions to quadratic equations.

Notes

This activity can be used to introduce quadratic graphs or as a revision exercise at the end of the course. The accompanying Powerpoint presentation includes the examples that are given on pages 1 and 2. The questions on pages 2 and 3 can be done on the worksheet, but those on page 5 expect students to draw the graphs on graph paper. Alternatively, students can use graphic calculators to answer all of the questions.

Answers

L			

a)

x	- 3	- 2	- 1	0	1	2	3
x^2	9	4	1	0	1	4	9
$2x^2$	18	8	2	0	2	8	18
$3x^2$	27	12	3	0	3	12	27
$-x^2$	- 9	- 4	- 1	0	- 1	- 4	- 9
$-2x^{2}$	- 18	- 8	- 2	0	- 2	- 8	- 18
$-3x^{2}$	- 27	- 12	- 3	0	- 3	- 12	- 27

b)

c) Possible answers include:

All curves pass through the origin. As the coefficient of x^2 increases, the curve becomes steeper. Positive x^2 terms give a \cup shaped curve, whilst negative x^2 terms give a \cap shaped curve.

The curve does not cross the line y = -10, so there are no solutions.

b) (- 0.5, 9.5)

c) (i) -2.7, 1.7	(ii) - 1.6, 0.6	(iii) - 3.8, 2.8
(iv) -1, 0	(v) -2.2, 1.2	(vi) - 3.6, 2.6

d) $2x^2 + 2x + 3 = 0$ is equivalent to $9 - 2x - 2x^2 = 12$. The curve does not cross the line y = 12, so there are no solutions.

